Abstract

Some spontaneous germline gain-of-function mutations promote spermatogonial stem cell clonal expansion and disproportionate variant sperm production leading to unexpectedly high transmission rates for some human genetic conditions. To measure the frequency and spatial distribution of de novo mutations we divided three testes into 192 pieces each and used error-corrected deep-sequencing on each piece. We focused on PTPN11 (HGNC:9644) Exon 3 that contains 30 different PTPN11 Noonan syndrome (NS) mutation sites. We found 14 of these variants formed clusters among the testes; one testis had 11 different variant clusters. The mutation frequencies of these different clusters were not correlated with their case-recurrence rates nor were case recurrence rates of PTPN11 variants correlated with their tyrosine phosphatase levels thereby confusing PTPN11's role in germline clonal expansion. Six of the PTPN11 exon 3 de novo variants associated with somatic mutation-induced sporadic cancers (but not NS) also formed testis clusters. Further, three of these six variants were observed among fetuses that underwent prenatal ultrasound screening for NS-like features. Mathematical modeling showed that germline selection can explain both the mutation clusters and the high incidence of NS (1/1000-1/2500).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call