Abstract

Among all cancers in women, breast cancer has the highest incidence. The mortality of breast cancer is highly associated with metastasis. Migration and malignant transformation of cancer cells have been reported to be modulated by store-operated calcium (SOC) channels, which control calcium signaling and cell proliferation pathways. Stromal interaction molecule 1 (STIM1) is a calcium sensor in the endoplasmic reticulum, triggering the activation of store-operated calcium signaling. However, the clinical relevance of STIM1 in breast cancer is still unclear. Here, we recruited 348 breast cancer patients and conducted a genetic association study to address this question. Four tagging germline single nucleotide variants (SNVs) in STIM1 were selected and RNA sequencing data of 525 breast cancer samples from The Cancer Genome Atlas (TCGA) database were evaluated. The results show that rs2304891 and rs3750996 were correlated with clinical stage of breast cancer. Expression quantitative trait loci (eQTL) analysis indicated that risk G allele of STIM1 contributed to the higher expression of STIM1. In addition, we found an increased risk of rs2304891 G allele and rs3750996 A allele in estrogen receptor (ER) positive and progesterone receptor (PR) positive patients. In conclusion, our results suggest that germline SNV, rs2304891 and rs3750996 as well as STIM1 expression are important biomarkers for the prediction of clinical outcomes in breast cancer patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.