Abstract

Dry direct-seeded rice (dry-DSR) is an efficient, resource-saving and environmentally friendly cropping system. The employment of water-saving and drought-resistant rice (WDR) for dry direct-seeding can better meet the needs of dry-direct seeding systems. However, the decline in seedling emergence rate and poor seedling growth are the main bottlenecks under current direct-seeded rice production. Seed treatment is a sustainable and effective technique to overcome these issues. Therefore, growth chamber and field experiments were conducted to assess the impact of poplar wood vinegar (WV) priming and rice straw biochar (BC) coating on emergence, establishment, growth, physio-biochemical events, and ultimate yield. We treated the seeds of WDR viz., Hanyou 73 with WV, BC, and co-treatment WV + BC. The results showed that seed priming with 1:50 WV concentration and coating with 20% BC content was the optimal ratio for promoting germination and seedling growth. The field evaluation indicated that individual WV and BC markedly promoted the final emergence by 58% and 31%, respectively, while co-treatment WV + BC increased by 67%. Likewise, WV and BC significantly enhanced total seedling biomass by 26% and 10%, respectively, and the respective enhancement of WV + BC was 31%. For ultimate yield, WV and BC produced 12% and 19% higher grain yield, respectively, whereas WV + BC yielded 20%. The above results revealed that WV and WV + BC were the most effective treatment. Our findings may provide new avenues for advancing pre-sowing seed treatments facilitating the stand establishment and grain yield of dry direct-seeded rice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call