Abstract

Previously, it has been shown that oocytes of marine nemertean worms resume meiosis and undergo germinal vesicle breakdown (GVBD) following treatment with either natural seawater (NSW), or the neurohormone serotonin (5-hydroxytryptamine or 5-HT). In this investigation of the nemerteans Cerebratulus lacteus and Cerebratulus sp., immunoblots and kinase assays were used to compare the roles of two regulatory kinases: mitogen-activated protein kinase (MAPK) and Cdc2/cyclin B (referred to as maturation promoting factor or MPF). Based on such analyses, an ERK (extracellular signal regulated kinase) type of MAPK was found to be activated concurrently with Cdc2/cyclin B during NSW- and 5-HT-induced maturation. MAPK activation occurred prior to GVBD and seemed to be controlled primarily by phosphorylation rather than de novo protein synthesis. Inhibition of MAPK signaling by U0126 was capable of delaying but not permanently blocking Cdc2/cyclin B activation and GVBD in 5-HT treated oocytes and subsets of NSW-treated oocytes. Collectively such data indicated that GVBD is not fully dependent on MAPK activation, since Cdc2/cyclin B can apparently be activated by MAPK-independent mechanism(s) in maturing nemertean oocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.