Abstract

Strain engineering is a powerful approach in micro- and optoelectronics to enhance carrier mobility, tune the bandgap of heterostructures, or break lattice symmetry for nonlinear optics. The dielectric stressors and bonding interfaces used for strain engineering in photonics can however limit thermal dissipation and the maximum operation temperature of devices. We demonstrate a new approach for enhanced thermal dissipation with stressor layers by combining metals and dielectrics. The method is applied to the germanium semiconductor. All-around tensile-strained germanium microdisks have been fabricated with metallic pedestals. The transferred tensile strain leads to a germanium thin film with a direct bandgap. Under continuous wave optical pumping, the emission of the whispering gallery modes is characterized by a threshold and an abrupt linewidth narrowing by a factor larger than 2. The occurrence of stimulated emission is corroborated by modeling of the optical gain. This demonstrates lasing with pure germanium microdisks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.