Abstract

The all-dielectric germanium nanohole (GNH) metasurface with a sub-wavelength thickness supports simultaneous excitation of quasi bound state in the continuum (BIC) and super radiant mode. By selecting the different hole depths in a germanium slab, we present a trade-off metasurface between high Q-factor and high absorption in the photonic system. The presented device demonstrated absorption of super-radiant mode ∼98.5% and quasi-BIC ∼93% without back-metal reflector at the telecommunication wavelength. The numerical results, obtained by the finite difference time domain (FDTD) method are explained in the framework of temporal coupled mode theory (TCMT).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.