Abstract

Supergene nonsulfide ores form from the weathering of sulfide mineralization. Given the geochemical affinity of Ge to Si4+ and Fe3+, weathering of Ge-bearing sulfides could potentially lead to Ge enrichments in silicate and Fe-oxy-hydroxide minerals, although bulk rock Ge concentrations in supergene nonsulfide deposits are rarely reported. Here, we present the results of an investigation into Ge concentrations and deportment in the Cristal supergene Zn nonsulfide prospect (Bongará, northern Peru), which formed from the weathering of a preexisting Mississippi Valley-type (MVT) sulfide deposit. Material examined in this study originates from drillcore recovered from oxidized Zn-rich bodies ~ 15–20 m thick, containing ~ 5–45 wt% Zn and Ge concentrations ~ 100 ppm. Microanalysis and laser ablation-ICP-MS show that precursor sphalerite is rich in both Fe (mean Fe = 8.19 wt%) and Ge (mean Ge = 142 ppm). Using the mineral geothermometer GGIMFis—geothermometer for Ga, Ge, In, Mn, and Fe in sphalerite—proposed by Frenzel et al. (Ore Geol Rev 76:52–78, 2016), sphalerite trace element data from the Cristal prospect suggest a possible formation temperature (TGGIMFis) of 225 ± 50 °C, anomalously high for a MVT deposit. Germanium concentrations measured in both goethite (mean values 100 to 229 ppm, max 511 ppm) and hemimorphite (mean values 39 to 137 ppm, max 258 ppm) are similar to concentrations measured in hypogene sphalerite. Additionally, the Ge concentrations recorded in bulk rock analyses of sphalerite-bearing and oxidized samples are also similar. A persistent warm-humid climate is interpreted for the region, resulting in the development of an oxidation zone favoring the formation of abundant Zn hydrosilicates and Fe hydroxides, both able to incorporate Ge in their crystal structure. In this scenario, Ge has been prevented from dispersion during the weathering of the Ge-bearing sulfide bodies and remains in the resultant nonsulfide ore.

Highlights

  • IntroductionMiner Deposita (2018) 53:155–169 originated from Kipushi)

  • At Cristal, Ge was detected in sphalerite, hemimorphite, and goethite

  • This is significant, since even though the occurrence of Ge in silicates and goethite has been already predicted from theoretical studies, this element has been seldom detected in supergene nonsulfide deposits

Read more

Summary

Introduction

Miner Deposita (2018) 53:155–169 originated from Kipushi) Germanium grades in these deposits range between 10 and 300 ppm (Melcher and Buchholz 2014, and references therein). BSupergene nonsulfides^ is a very general definition, used in the literature to describe a group of ore deposits mainly consisting of oxidized Zn-Pb minerals, formed from the oxidation of sulfide-bearing ores in a weathering regime. Such deposits largely consist of Zn- and Pb-carbonates (smithsonite, hydrozincite, and cerussite) and the Zn-silicates hemimorphite, willemite, and sauconite (Large 2001; Hitzman et al 2003). Until now, the lack of information regarding the Ge concentrations has been taken to indicate that supergene nonsulfide Zn-Pb deposits are poor targets for Ge recovery (Melcher and Buchholz 2014)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call