Abstract

Thermoelectric materials can convert untapped heat to electricity and are expected to have an important role in future energy utilization. IV–VI metal chalcogenides are the most promising candidates for mid-temperature thermoelectric power generation. Among them, PbTe and their alloys have been proven to be the superior thermoelectric materials. Unfortunately, the toxicity of lead (Pb) prevents the application of lead chalcogenides and demands the search for lead-free high-performance solids. This perspective discusses the recent progress of thermoelectric property studies on germanium chalcogenides (GeTe, GeSe, and GeS) for mid-temperature power generation. Here, we have discussed the crystal structure, chemical bonding, and phonon dispersion of germanium chalcogenides to understand the underlying lattice dynamics and low lattice thermal conductivity from a chemistry perspective. We have also discussed the uniqueness of the electronic structure of GeTe and GeSe, which plays an important role in tailoring...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call