Abstract

The inheritance of predisposition to nonsyndromic familial nonmedullary thyroid cancer (FNMTC) remains unclear. Here, we report six individuals with papillary thyroid cancer (PTC) in two unrelated nonsyndromic FNMTC families. Whole-exome sequencing revealed two germ-line loss-of-function variants occurring within a 28-bp fragment of WDR77, which encodes a core member of a transmethylase complex formed with the protein arginine methyltransferase PRMT5 that is responsible for histone H4 arginine 3 dimethylation (H4R3me2) in frogs and mammals. To date, the association of WDR77 with susceptibility to cancer in humans is unknown. A very rare heterozygous missense mutation (R198H) in WDR77 exon 6 was identified in one family of three affected siblings. A heterozygous splice-site mutation (c.619+1G > C) at the 5' end of intron 6 is present in three affected members from another family. The R198H variant impairs the interaction of WDR77 with PRMT5, and the splice-site mutation causes exon 6 skipping and results in a marked decrease in mutant messenger RNA, accompanied by obviously reduced H4R3me2 levels in mutation carriers. Knockdown of WDR77 results in increased growth of thyroid cancer cells. Whole-transcriptome analysis of WDR77 mutant patient-derived thyroid tissue showed changes in pathways enriched in the processes of cell cycle promotion and apoptosis inhibition. In summary, we report WDR77 mutations predisposing patients to nonsyndromic familial PTC and link germ-line WDR77 variants to human malignant disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.