Abstract

Geranylgeranyl transferase 1 (GGT1) is involved in the posttranslational prenylation of signaling proteins, such as small GTPases. We have shown that blocking the formation of isoprenoids with statins regulates survival of human lung mesenchymal cells; thus, we tested the hypothesis that GGT1 may specifically modulate programmed cell death pathways in these cells. To this end, human airway smooth muscle (HASM) cells were treated with the selective GGT1 inhibitor GGTi-298. Apoptosis was seen using assays for cellular DNA content and caspase activation. Induction of autophagy was observed using transmission electron microscopy, immunoblotting for LC3 lipidation and Atg5-12 complex content, and confocal microscopy to detect formation of lysosome-localized LC3 punctae. Notably, GGT1 inhibition induced expression of p53-dependent proteins, p53 upregulated modulator of apoptosis (Noxa), and damage-regulated autophagy modulator (DRAM), this was inhibited by the p53 transcriptional activation inhibitor cyclic-pifithrin-α. Inhibition of autophagy with bafilomycin-A1 or short-hairpin RNA silencing of Atg7 substantially augmented GGTi-298-induced apoptosis. Overall, we demonstrate for the first time that pharmacological inhibition of GGT1 induces simultaneous p53-dependent apoptosis and autophagy in HASM. Moreover, autophagy regulates apoptosis induction. Thus, our findings identify GGT1 as a key regulator of HASM cell viability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call