Abstract

In this paper, we present an innovative and powerful combination of grammatical evolution and a physics-informed neural network approach for symbolically solving the Lane–Emden type equation, which is a nonlinear ordinary differential equation. We employ a grammatical evolution algorithm based on a context-free grammar to construct a mathematical expression comprising some parameters. Subsequently, these parameters are determined using the physics-informed neural networks approach. To achieve this, the computational graph of the mathematical expression generated in each iteration of the grammatical evolution is treated as a network. To assess the proposed method, we consider the Lane–Emden type equation. The proposed method demonstrated that it is a capable method for symbolically solving nonlinear ordinary differential equations accurately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.