Abstract

Abstract Geothermal resources occurring in the Changbaishan volcanic field are directly or indirectly controlled by volcanic activity and exhibit a close correlation with deep-seated faults. Energy and thermal transfer are generally controlled by groundwater circulation and hot gas emission. This article considers the detectability of hot water and gas by geophysical methods. The controlled source acoustic magnetotelluric (CSAMT) and radon (222Rn) gas methods give straightforward information on electrical resistivity and natural radon emissions, respectively, to assess the geothermal condition. The CSAMT method detected five-banded low-apparent resistivity bodies (decreasing from 3,000 to 300 Ωm), indicating that there exists a high degree of water-bearing capacities in the subsurface. The radon (222Rn) gas concentrations were monitored in two rapid growth zones: one zone showing values ranging from 3,000 to 23,000 Bq/m3, and the other with values from 4,000 to 24,000 Bq/m3. These changes demonstrate that the heat energies available in these areas were very high and that there is potential for geothermal resources in those zones. Combining with previously published data from geothermometry and geothermal drilling, we argue that there is great potential in Erdaobaihe for geothermal exploitation and that the geothermal resource type should be classified into uplift mountain geothermal system no magma type.

Highlights

  • Geothermal resources, as an alternative source of energy, are generally developed in areas where volcanism and magmatism have been active since the Late Cenozoic [1,2]

  • These faults can be categorized into two types: (1) the NW and NE older faults, which are suggested to be related to the successive subduction of the Pacific plates in the eastern margin of the Eurasian continent; and (2) the NS young faults, which are associated with Late Cenozoic volcanic activity and form the Julong hot spring

  • Combining with the fact that there are three ascending springs near site 44 (Figure 3), we argued that these low-resistivity anomalies above could act as vessels for hot water to migrate from the deep thermal reservoir into shallower crust

Read more

Summary

Introduction

Geothermal resources, as an alternative source of energy, are generally developed in areas where volcanism and magmatism have been active since the Late Cenozoic (i.e., the Jingbohu, Wudalianchi, and Tengchong geothermal fields) [1,2]. As one of three active volcanoes in China, the Changbaishan volcanic field saw eruptions in 1668, 1702, and 1903 AD, which were high-intensity explosive eruptions and demonstrated favorable geothermal resource potential [3]. There is not even a hot spring with high economic value and exploitation potential further away from the Changbaishan volcano, which is inconsistent with the classical volcano-geothermal model [3]. This is due to the periphery of Tianchi caldera lacking geophysical data covering the deep faults. In this work we present results from surveys undertaken using the advanced controlled source audio-frequency magnetotellurics (CSAMT) method, which displays great depth penetration, to uncover the migration pathways of hot water and the radon (222Rn) gas method to assess the heat energy and to confirm the inferences made from the analysis of the CSAMT data

Regional setting
Local setting
Controlled source audio-frequency magnetotellurics
Radon gas survey
CSAMT results
Radon gas result
Geothermal resource potential assessment of Erdaobaihe
Geothermal resource in Erdaobaihe
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.