Abstract

Closely spaced heat flow surveys at four sites on the flanks of the Central Indian Ridge and the Southeast Indian Ridge delineate a pattern of oscillatory heat flow which can only result from cellular convection of oceanic bottom water through the oceanic crust and overlying sediment. These cells have a wavelength of 5 to 10 kilometers and are presently active in sea floor 18 x 10(6), 25 x 10(6), and 45 x 10(6) years old of the Crozet Basin and in sea floor 55 x 10(6) years old of the Madagascar Basin. The precise measurement of nonlinear temperature profiles makes it possible to calculate the conductive and convective heat transfer components through the sea floor. Even in the oldest sites, geothermal convection is still a major component of heat transfer through both the crust and sedimentary layers. These observations coupled with the results of earlier oceanwide geothermal studies indicate that more than one-third of the entire surface area of the world's ocean floor contains presently active geothermal convection that is cellular in plan form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.