Abstract

Permeable pavement systems are important part of the sustainable urban drainage system (SUDS). Over a decade ago, it was proposed that the pervious pavement system (PPS) has the capability to store water for reuse, the possibility of using the SUDS device simultaneously in source control and water recycling applications have not been holistically investigated by previous studies. This paper reports experiments where water from geotextile incorporated permeable pavement system models on which 24 mL/m2 of hydrocarbon was applied as a pollutant. A single dose of 17 g of nitrogen, phosphorus and potassium slow release nutrients (applied to encourage biodegradation) was administered to the surface. The PPS recycled water was used to irrigate tomato plants (Lycopersicon esculentum (Fantasio hybrid)) and rye grass (Lolium perenne) for ten weeks. The growth, development, and heavy metal content of the organs of these plants were compared to that of plants from untreated rigs and with plants treated with de‐ionized water (DI) as well as the pH, sodium adsorption ratio, and electrical conductivity. The comparative performance of the plants indicated that the water from the treated rigs supported plant growth more than the water from the untreated test rigs and DI. Heavy metal analysis of the plants organs indicated that the metals were at normal levels and below toxicity levels for plants and livestock. Soil structure tests showed that there were no salinity or soil structure issues. Heavy metal analysis of soil also indicated that the metals were within normal range and below toxicity levels. These results further demonstrate the water recycling capability of the PPS and its potential use for irrigation purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call