Abstract

Within the framework of second-order cone programming optimized micropolar continuum finite-element method (CosFEM-SOCP), the geotechnical strain localization can be adequately modeled. In most existing literatures, however, the constant internal characteristic length lc has been adopted and less attention has been paid to the evolution of lc. To more accurately predict the strain localization, response, and stability of a geotechnical system, one relationship for evolving lv that relies on the equivalent plastic strain is implemented and investigated. Based on one homogeneous slope example and one rigid strip footing example, it was found that geotechnical stability may not be significantly affected by evolving lv, indicating that constant lc can be simply applied to geotechnical stability analysis. For the rigid strip footing problem, nevertheless, the effects of evolving lv on the pressure–displacement response curves should not be ignored, and the influence range of the shear band predicted by CosFEM-SOCP with evolving lv is generally smaller than that predicted by CosFEM-SOCP with constant lc. Consequently, in order to more accurately predict the pressure–displacement response curves and the failure zone, the evolving lv will be adequately assessed and modeled.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call