Abstract

This paper investigates the ultimate limit state load and resistance factor design (LRFD) of deep foundations founded within purely cohesive soils. The geotechnical resistance factors required to produce deep foundation designs having a maximum acceptable failure probability are estimated as a function of site understanding and failure consequence. The probability theory developed in this paper, used to determine the resistance factors, is verified by a two-dimensional random field Monte Carlo simulation of a spatially variable cohesive soil. The agreement between theory and simulation is found to be very good, and the theory is then used to derive the required geotechnical resistance factors. The results presented in this paper can be used to complement current ultimate limit state design code calibration efforts for deep foundations in cohesive soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call