Abstract

The geotechnical properties and microstructures of lime-stabilized silt clay from Jilin province, China, were studied in detail. Laboratory tests were conducted to evaluate the effects of lime content and curing time on the overall soil properties, including compaction characteristics, Atterberg limits, particle size distribution, pH, stress–strain behavior, peak strength, shear strength parameters, and California bearing ratio (CBR). The stabilized mechanisms of lime in silt clay were examined, and the observed test results were explained based on the results of scanning electron microscropy (SEM) and X-ray diffraction analyses of the specimens. Lime content and curing duration significantly influenced the geotechnical properties and microstructure of the lime-stabilized silt clay specimens. An increase in lime content resulted in increases in compaction water content, liquid limit, plastic limit, sand size-fractions, pH, peak strength, cohesion, internal friction angle, and the CBR, but led to a reduction in the plasticity index, silt fractions, clay fractions, swelling capacity, and water absorption. Also, the addition of lime to silt clay changed this soil type from a ductile to a brittle material. The optimum lime content of the silt clays from Jilin province was determined to be approximately 5–7%. SEM micrographs showed that a white cementitious gel was formed after the addition of lime and that peaks related to smectite, illite, kaolinite, and quartz appeared to be sharper after stabilization with lime and a 90-day period of curing. These results show that the geotechnical properties of lime-stabilized silt clay are affected by the microstructural organization of the silt clay itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.