Abstract

In the context of the RIVIERA project, the building of a 3D geotechnical model at the city scale (Pessac, France) has been undertaken, from several hundreds of boreholes and geotechnical tests. It is first shown how the combination of the lithological information and of geotechnical results can improve thanks to Bayesian statistics the knowledge of mechanical characteristics in the various alluvial terraces which can be encountered in this area. Secondly the upper and lower limits of the 3D model at the city scale are computed by improving an initial digital elevation model for the upper limit and by kriging under inequality constraints for the lower limit. These limits border Quaternary formations which are of interest for geotechnical applications. In a third stage, it is focused on the spatial modelling of the pressuremeter modulus. The sequential indicator simulation method enables to obtain the spatial probability of occurrence of a given pressiometer modulus class. Coupled with other information, the analysis of these statistical and geostatistical models makes possible to develop decision support tools such as to localise, for instance, areas more prone to the clay shrinkage–swelling hazard.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call