Abstract

GeoSeism is a GIS-based application software which is intended to provide more automated seismic microzonation studies by utilizing the interoperable GIS technology. Proving the applicability of the LCIM (Levels of Conceptual Interoperability Model), it portrays an implemented combination of technical along with semantic and conceptual interoperability maturity, in which the modelling level of interoperability consists of more than one data end-users. Based on the experiences distilled from an extensive case study, this case faces problems of data inconsistency related to semantics. Inconsistency restricts the capability to derive geotechnical meanings from the employed geospatial data. The role of the semantic interoperability level is to appropriately process the meanings of the exchanged data so that the end-users can efficiently use these data. Otherwise, data are not fully applicable on geotechnical methodologies. The interoperation with the expert knowledge algorithm Semantic Interpreter Pythia (SI) proved especially helpful to undertake the role to improve the semantic interoperability in an automated manner. It modeled the semantics of data prior to data exchange. This innovative type of semantic interpretation is not related to the conventional search processes but to the spatial data process and the overcoming of a variety of many semantic-related data inconsistency. Distributed systems could evolve into geotechnical interoperable GIS combining typical application software with an SI. GeoSeism implemented a first concept of interoperable GIS which can model geotechnical semantics to ensure semantic interoperability, as well as allows for current or future interchange of geotechnical operations and applicable data for the benefit of engineers and GIS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call