Abstract

In this paper, a geosynchronous synthetic aperture radar (SAR) (GEOSAR) mission for atmospheric phase screen (APS) retrieval using a long coherent integration of pulses is analyzed. The nearly fixed position of the geosynchronous platforms makes GEOSAR systems suitable for continuous monitoring applications. However, using moderate transmitted powers and antenna sizes, very long integration times up to hours are required. In GEOSAR, the two-way propagation of radar signals can decorrelate significantly due to atmospheric changes during the long data take, resulting in an APS which can cause image defocusing and artifacts. In this paper, the APS effects are analyzed, and an APS correction algorithm from short-term periodic acquisitions (subapertures) of the whole long-term GEOSAR synthetic aperture is described. The results obtained from the APS retrieval algorithm in a simulated GEOSAR acquisition affected by atmospheric decorrelation are presented. Finally, an experimental test of the APS algorithm performance with a long-integration ground-based SAR acquisition is shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.