Abstract

The authors examine freely evolving geostrophic turbulence, in two layers over a linearly sloping bottom. The initial flow is surface trapped and subdeformation scale. In all cases with a slope, two components are found: a collection of surface vortices, and a bottom-intensified flow that has zero surface potential vorticity. The rate of spinup and the scale of the bottom flow depend on L[ F2U1/b 2, which measures the importance of interfacial stretching to the bottom slope, with small values of L corresponding to a slow spinup and stronger along-isobath anisotropy. The slope also affects the mean size of the surface vortices, through the dispersal of flow at depth and by altering vortex stability. This too can be characterized in terms of the parameter, L.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.