Abstract

We investigate prediction abilities of different variants of kriging and different combinations of data in a local geometric (GNSS/leveling based) geoid modeling. In order to generate local geoid models, we have used GNSS/leveling data and EGM2008 geopotential model. EGM2008 has been used twofold. Firstly, it was used as a basic long wave-length trend to be removed from geoid undulation data to generate a residual field of geoid heights modeled later by kriging (remove-restore technique). Secondly, EGM2008-based undulations were used as a secondary variable in a cokriging prediction procedure (as pseudo-observations). Besides the use of EGM2008, the kriging-based local geometric geoid models were generated only on the basis of raw undulations data. Kriging itself was used in two variants, i.e. ordinary kriging and universal kriging for univariate and bivariate cases (cokriging). The quality of kriging-based prediction for all its variants and all data combinations have been investigated on one fixed validation dataset consisting of 86 points and three training data sets characterized by a different density of sampling. Results of this study indicate that incorporation of EGM08 as a long wave-length trend in kriging prediction procedure outperforms cokriging strategy based on incorporation of EGM08 as a secondary spatially correlated variable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call