Abstract

Summary The methods kriging with external drift (KED) and indicator kriging with external drift (IKED) are used for the spatial interpolation of hourly rainfall from rain gauges using additional information from radar, daily precipitation of a denser network, and elevation. The techniques are illustrated using data from the storm period of the 10th to the 13th of August 2002 that led to the extreme flood event in the Elbe river basin in Germany. Cross-validation is applied to compare the interpolation performance of the KED and IKED methods using different additional information with the univariate reference methods nearest neighbour (NN) or Thiessen polygons, inverse square distance weighting (IDW), ordinary kriging (OK) and ordinary indicator kriging (IK). Special attention is given to the analysis of the impact of the semivariogram estimation on the interpolation performance. Hourly and average semivariograms are inferred from daily, hourly and radar data considering either isotropic or anisotropic behaviour using automatic and manual fitting procedures. The multivariate methods KED and IKED clearly outperform the univariate ones with the most important additional information being radar, followed by precipitation from the daily network and elevation, which plays only a secondary role here. The best performance is achieved when all additional information are used simultaneously with KED. The indicator-based kriging methods provide, in some cases, smaller root mean square errors than the methods, which use the original data, but at the expense of a significant loss of variance. The impact of the semivariogram on interpolation performance is not very high. The best results are obtained using an automatic fitting procedure with isotropic variograms either from hourly or radar data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call