Abstract

A thorough understanding of the characteristics of transmissivity makes groundwater deterministic models more accurate. These transmissivity data characteristics occasionally possess a complicated spatial variation over an investigated site. This study presents both geostatistical estimation and conditional simulation methods to generate spatial transmissivity maps. The measured transmissivity data from the Dulliu area in Yun-Lin county, Taiwan, is used as the case study. The spatial transmissivity maps are simulated by using sequential Gaussian simulation (SGS), and estimated by using natural log ordinary kriging and ordinary kriging. Estimation and simulation results indicate that SGS can reproduce the spatial structure of the investigated data. Furthermore, displaying a low spatial variability does not allow the ordinary kriging and natural log kriging estimates to fit the spatial structure and small-scale variation for the investigated data. The maps of kriging estimates are smoother than those of other simulations. A SGS with multiple realizations has significant advantages over ordinary kriging and even natural log kriging techniques at a site with a high variation in investigated data. These results are displayed in geographic information systems (GIS) as basic information for further groundwater study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.