Abstract

We show that it is possible to launch a satellite to Geostationary Equatorial orbit (GEO) from the non-equatorial launch site (Naro Space Center in South Korea) even though that is located in the mid-latitudes of the northern hemisphere. When launched from this site, the equatorial inclination after separation will be 80°. We use a lunar gravity assist (LGA) transfer to avoid the excessive ∆V costs of plane change maneuvers. There are eight possible paths for the LGA; there are four paths consisting of Earth departures and free-return types, and there are two nodes of the Moon’s orbit (ascending and descending). We analyze trajectories over five launch periods for each path using a high-fidelity orbit propagation model. We show that the LGA changes the orbital energy of the “cislunar” free-returns more than for the “circumlunar” free-returns, resulting in less geostationary insertion ∆V for the cislunar free-returns. We also show that the geometrical ∆V variation over the different paths is greater than the seasonal ∆V variation. Our results indicate that an ascending departure and cislunar free-return at the descending node have lower ∆V requirements than the other paths, and lower than described in several previous studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call