Abstract

In an effort to mitigate anthropogenic climate impacts the U.S. has established ambitious Nationally Determined Contribution (NDC) targets, aiming to reduce greenhouse gas emissions by 50% before 2030 and achieving net-zero emissions by 2050. Enhanced rock weathering (ERW)—the artificial enhancement of chemical weathering of rocks to accelerate atmospheric CO2 capture—is now widely seen as a potentially promising carbon dioxide removal (CDR) strategy that could help to achieve U.S. climate goals. Grinding rocks to smaller particle size, which can help to facilitate more rapid and efficient CO2 removal, is the most energy-demanding and cost-intensive step in the ERW life cycle. As a result, accurate life cycle analysis of ERW requires regional constraints on the factors influencing the energetic and economic demands of feedstock grinding for ERW. Here, we perform a state-level geospatial analysis to quantify how carbon footprints, costs, and energy demands vary among regions of the coterminous U.S. in relation to particle size and regional electricity mix. We find that CO2 emissions from the grinding process are regionally variable but relatively small compared to the CDR potential of ERW, with national averages ranging between ~5–35 kgCO2 trock−1 for modal particle sizes between ~10–100 μm. The energy cost for feedstock grinding also varies regionally but is relatively small, with national average costs for grinding of roughly 0.95–5.81 $ trock−1 using grid mix power and 1.35–8.26 $ trock−1 (levelized) for solar PV for the same particle size range. Overall energy requirements for grinding are also modest, with the demand for grinding 1 Gt of feedstock representing less than 2% of annual national electricity supply. In addition, both cost and overall energy demand are projected to decline over time. These results suggest that incorporating feedstock grinding into ERW deployment at scale in the coterminous U.S. should generally have only modest impacts on lifecycle emissions, cost-effectiveness, and energy efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.