Abstract

Abstract. Currently, using digital orthophoto map (DOM) and digital elevation model (DEM) as reference to achieve geometric positioning of newly acquired satellite images has become a popular photogrammetric approach. However, this method relies on DOM and DEM data which requires a lot of storage space in practical applications. In addition, for geometric positioning of satellite images, only sparse image feature points are needed as control points. Consequently, for the sake of convenience, the compression of control data emerges as a necessity with significant practical implications. This paper investigates a "cloud control" photogrammetry method based on geocoded image features. The method extracts SIFT feature points from DOMs, and obtains their ground coordinates, then constructs geocoded image feature library instead of DOM and DEM data as control, thus realizing the compression of control data. Experiments conducted on the Tianhui-1, Ziyuan-3 and Gaofen-2 satellite images demonstrate that the proposed method can achieve high-precision geometric positioning of satellite images and greatly reduce the size of the control data. Specifically, with the reduction of the reference data from 180~1248 MB 2 m DOM and 30 m DEM to 5~10 MB geocoded image features, the geopositional accuracies of the test Tianhui-1, Ziyuan-3 and Gaofen-2 images are improved from 3.12 pixels to 1.74 pixels, 3.69 pixels to 1.09 pixels, and 150.93 pixels to 2.67 pixels, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.