Abstract

Metakaolin-based geopolymers were synthesized at Si/Al ratios of 1:1, 1.5:1, 2:1, 3:1, 4:1, and 5:1 by using silica fume as silica corrector to alter Si ratios. The microstructure and strength of these geopolymers were characterized through XRD, SEM, NMR and compressive strength measurements. The dissolving rates of Al and Si species in geopolymerization were measured, and freeze-dried N-A-S-H gel was characterized by FTIR spectra. Modelling and simulation were employed to calculate the binding energy of one Si atom and the total energy of geopolymers formed at various Si/Al ratios. At Si/Al ratio of 2:1, high concentrations of Si and Al species are dissolved from precursors, high contents of Si-O-T linkages are formed and the geopolymer is of high compressive strength. The mechanical strength of geopolymers at various Si/Al ratios is dependent on the formation of N-A-S-H gel, rather than the zeolitic nuclei or silicate derivatives. This study might provide fundamentals for the geopolymerization of mine tailings, which usually possess high Si/Al ratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call