Abstract
A combination of gasification of low and intermediate level radioactive waste (LILW) and conditioning of the resulting product within a geopolymer matrix is a potential alternative for vitrification technologies as an immobilisation method. Geopolymer matrices have demonstrated good retention capability for radionuclides in many studies and the technology has been implemented at an industrial scale in Slovakia and Czech Republic. However, the practical waste loading has been limited by the mechanical properties of the encapsulated matrix. Even a small amount of ion exchange resin (IXR) decreases the strength of the matrix and cohesion of the matrix is lost when the fraction of resin exceeds 15-20%. In this study, the potential to combine gasification as thermal treatment and various inorganic binders as encapsulation matrices was evaluated. After gasification, the mechanical properties were not similarly sensitive to the encapsulation of IXR. Gasification enabled substantially higher loading of IXR into the sample. Also, gasification of the IXR decreased matrix apparent Caesium diffusion. Very low apparent diffusion coefficients of Cs were calculated when gasified resin was encapsulated in metakaolin matrix. Theoretically, the amount of Cs within the same volume of encapsulated material could be increased by 800 times following gasification and encapsulation within an alkali-activated metakaolin (MK) binder.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.