Abstract
Fluid flow simulations are commonly used to predict the fluid displacement in subsurface reservoirs; however, model validation is challenging due to the lack of direct measurements. Geophysical data can be used to monitor the displacement of the fluid front. The updating of the fluid front location in two-phase flow problems based on time-lapse geophysical data can be formulated as an inverse problem, specifically a data assimilation problem, where the state is a vector of binary variables representing the fluid-facies and the observations are measurements of continuous geophysical properties, such as electrical or elastic properties. In geosciences, many data assimilation problems are solved using ensemble-based methods relying on the Kalman filter approach. However, for discrete variables, such approaches cannot be applied due to the Gaussian-linear assumption. An innovative approach for mixed discrete-continuous problems based on ensemble updating of binary state vectors is presented for fluid-facies prediction problems with time-lapse geophysical properties. The proposed inversion method is demonstrated in a synthetic two-dimensional simulation example where water is injected into a reservoir and hydrocarbon is produced. Resistivity values obtained from controlled-source electromagnetic data are assumed to be available at different times. According to the results, the proposed inversion method is to a large extent able to reproduce the true underlying binary field of fluid-facies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.