Abstract

A geophysical reconnaissance was conducted to support aquifer characterization and evaluate groundwater potential in the western portion of the Plaine du Nord aquifer to provision the growing water demands of the city of Cap-Haitien in the Republic of Haiti. Hybrid-source audio-magnetotelluric (HSAMT) soundings and gravity measurements were collected to support the Government of Haiti in sourcing additional water supplies for the city. The Plaine du Nord aquifer is poorly characterized considering it is one of Haiti’s largest aquifers, few drilling logs are available, and only one borehole has investigated the deeper extents of the aquifer. HSAMT supports depth profiling of subsurface resistivity, which supports interpretations of geological strata and groundwater conditions. Gravity measurements allow for complementary mapping of Earth density anomalies and contrasts, which assist in interpreting aquifer thicknesses or depth to bedrock. Pairing HSAMT and gravity methods permitted both an estimation of aquifer thickness and relative changes in sediment characteristics. Gravity results allowed for the mapping of aquifer thickness across the study area, with interpreted thickness greater than 300 m in the coastal zone. HSAMT results cross correlated with available well records and enabled the delineation of zones with increased groundwater potential. The results of the combined methods indicate groundwater storage potential of freshwater in deeper alluvium and emphasize the importance of strengthening resource characterization, modelling and monitoring to guide sustainable resource development and management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.