Abstract

The Newton Au-Ag deposit is an intermediate sulfidation state epithermal system in British Columbia, Canada. Multiple types of geophysical data are interpreted and evaluated with drillcore petrophysical, geochemical, and geologic observations to better understand the geophysical signature of the Newton epithermal system. Airborne [Formula: see text]-ray data sets indicate elevated emission counts of K, eTh, and eU over the Newton epithermal system, which are caused by hydrothermal alteration. Drillcore [Formula: see text]-ray measurements also indicate high potassium concentrations related to the K-rich phyllosilicates in the form of argillic and quartz-sericite alteration assemblages. Magnetization vector inversion (MVI) is used to recover an unconstrained 3D magnetization vector model of the system on regional and deposit scales. The regional MVI has resolved a deep concentric-shaped low magnetic zone that is interpreted as a porphyry system beneath the epithermal deposit. At the deposit scale, 3D direct current (DC) resistivity and induced polarization (IP) inversion, and unconstrained MVI revealed finer details of the epithermal system architecture. Cooperative DC/IP and magnetic inversion, at the deposit scale, constrained the magnetic susceptibility model and recovered a more precise susceptibility image of the epithermal system that is well-matched with borehole geology. The integrated geophysical interpretation helped to resolve several 3D latent geologic features in places without direct access to drillcore samples. We identified four petrophysical domains based on the three cooperatively inverted physical properties, including electrical resistivity, IP chargeability, and magnetic susceptibility. The combined geophysical models differentiated porphyritic intrusions (chargeability/susceptibility lows), disseminated sulfides (resistivity lows and chargeability highs), a Cu-rich zone in mafic volcanic rocks (susceptibility/chargeability highs and resistivity lows), and an Au-Ag-Cu-rich zone with silicification in felsic volcanic rocks (chargeability/susceptibility lows and resistivity highs). These petrophysical domains also provide useful exploration vectors for identification of similar epithermal systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.