Abstract

AbstractThis study presents a geophysical‐geochemical integrated model of the thermochemical structure of the lithosphere and uppermost mantle along a transect from the Northern Tyrrhenian Sea to the Pannonian Basin, crossing the northern Apennines, the Adriatic Sea, and the Dinarides fold‐thrust belt. The objectives are to image crustal thickness variations and characterize the different mantle domains. In addition, we evaluate the topographic response of opposed subductions along this transect and discuss their implications in the evolution of the region. Results show a more complex structure and slightly higher average crustal density of Adria compared to Tisza microplate. Below the Tyrrhenian Sea and Western Apennines, Moho lays at <25 km depth while along the Eastern Apennines it is as deep as 55 km. The modeled lithosphere‐asthenosphere boundary (LAB) below the Tyrrhenian Sea and Pannonian Basin is flat lying at ∼75 and 90 km, respectively. Below the External Apennines and Dinarides the LAB deepens to 150 km, slightly shallowing toward the Adriatic foreland basin at 125 km depth. Our results are consistent with the presence of two mantle wedges, resulting from the rollback of the Ligurian‐Tethys and Vardar‐NeoTethys oceanic slabs followed by continental mantle delamination of the eastern and western distal margins of Adria. These two opposed slabs beneath the Apennines and Dinarides are modeled as two thermal sublithospheric anomalies of −200°C. Most of the elevation along the profile is under thermal isostasy and departures can be explained by regional isostasy with an elastic thickness between 10 and 20 km.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call