Abstract

Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface.

Highlights

  • Remediation of subsurface radionuclides and trace metal contaminants is one of the U.S Department of Energy’s (DOE) greatest challenges for long-term stewardship [1]

  • Compared to direct injection of carbonate solution that could lead to clogging near the injection wells due to rapid precipitation of calcium carbonate, microbially facilitated calcium carbonate precipitation relies on the production of carbonate via urea hydrolysis, allowing urea to transport further into the subsurface before significant production of carbonate occurs

  • Alluvial sediments used in the experiment were collected from a background site north of Idaho Nuclear Technology and Engineering Center (INTEC) of the Idaho National Laboratory (INL). 90Sr contamination was found in the subsurface below the INTEC facility

Read more

Summary

Introduction

The NH4+ produced during ureolysis can exchange with cations (including radionuclides such as 90Sr2+) previously sorbed to the subsurface materials (Eq 2), thereby promoting metal sequestration in a more stable form (precipitation instead of sorption) (Eq 3). This remediation approach is attractive for environments where the groundwater is already saturated or oversaturated with respect to calcium carbonate, and the potential for releasing trapped metals through calcium carbonate dissolution over the long term is minimal. In addition to metal sequestration, enhanced calcium carbonate precipitation has many other potential applications, such as providing cementation for soil strengthening [10], and a long term sink for atmospheric carbon associated with CO2 storage/sequestration within geological media [11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call