Abstract

In this study, we present an experiment design and assess the capability of multiple geophysical techniques to image buried human remains in mass and individual graves using human cadavers willingly donated for scientific research. The study is part of a novel, interdisciplinary mass grave experiment established in May 2021 which consists of a mass grave with 6 human remains, 3 individual graves and 2 empty control graves dug to the same size as the mass grave and individual graves. Prior to establishing the graves, we conducted background measurements of electrical resistivity tomography (ERT), electromagnetics (EM), and ground penetrating radar (GPR) while soil profiles were analyzed in situ after excavating the graves. All graves were also instrumented with soil sensors for monitoring temporal changes in soil moisture, temperature, and electrical conductivity in situ. Measurements of ERT, EM and GPR were repeated 3, 37, 71 and 185 days after burial with further repeated measurements planned for another twelve months. ERT results show an initial increase in resistivity in all graves including the control graves at 3 days after burial and a continuous decrease thereafter in the mass and individual graves with the strongest decrease in the mass grave. Conductivity distribution from the EM shows a similar trend to the ERT with an initial decrease in the first 3 days after burial. Distortion in linear reflectors, presence of small hyperbolas and isolated strong amplitude reflectors in the GPR profiles across the graves is associated with known locations of the graves. These initial results validate the capability of geoelectrical methods in detecting anomalies associated with disturbed ground and human decay while GPR though show some success is limited by the geology of the site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.