Abstract

Integrated geophysical surveys were performed in two sites, Fossa di Fuardo and Terme di San Calogero in Lipari Island, Southern Italy with the intent of the exploration of low-enthalpy geothermal fluids. Both sites show strong geochemical and geologic evidences of hydrothermal activity. The geophysical methods consist of two microgravimetric surveys, two 2D geoelectric profiles, a seismic reflection profile and a five seismic refraction profiles. The seismic methods allowed us to locate the main subsurface seismic discontinuities and to evaluate their geometrical relationships. The gravity field was used to constraint the seismic discontinuities, while the electric prospecting let discriminate more conductive areas, which could correspond to an increase in thermal fluid circulation in the investigated sites.The results obtained by the different geophysical methods are in good agreement and permit the definition of a reliable geo-structural model of the subsurface setting of the two investigated areas. A low-enthalpy geothermal reservoir constituted by a permeable pyroclastic and lava sequence underlying two shallow impermeable formations was found at Fossa del Fuardo. The reservoir is intersected by some sub-vertical faults/fractures that probably play an important role in convoying the thermal water up to the surface. At the other site, Terme di S. Calogero, the geophysical surveys showed that an intense circulation of fluids affects the subsurface of the area. This circulation concentrates along a ENE-trending fault located at a little distance from the thermal resort. The hot fluids may upraise along the fault if the width of the ascent area is smaller than 20m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.