Abstract

As the west rim of an ejective fold zone, the Huaying Mountain fault zone (HMFZ) in the eastern Sichuan Basin (SB) plays an important role in the tectonic evolution of the SB. The distribution and characteristics of HMFZ are strongly associated with tectonic activities and have greatly impacted the distribution of oil and gas reservoirs. However, its distribution and characteristics have remained poorly understood due to a lack of geophysical data, especially areal gravity survey and magnetotellurics (MT) survey, which are admittedly advantageous for detecting the edges of geological structures. Therefore, we carried out the ground geophysical surveys that areal gravity survey and MT survey, and acquired 1:250,000-scale real gravity data and MT data for the first time in this area. Optimized edge-detection methods were adopted to process the areal gravity data, allowing us to characterize the planar distribution of faults more reliably and convincingly. We found that the southern HMFZ is well developed and primarily trends in NNE and NE, whereas the subordinate faults trend in N-S and W-E. Vertical information for the faults extracted using the improved depth from the extreme points method revealed that the fault dominantly dipped to the SE, which was consistent with the results of MT inversion. Based on the spatial distribution of the faults, we further discussed the gravity anomaly, fault distribution, Luzhou palaeo uplift, and the distribution and characteristics of oil-gas resources, and found the convincing evidence to analysis the distribution of oil and gas resources in this region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call