Abstract

By summing geophone and hydrophone data with opposite polarity responses to water layer reverberation, the ocean bottom cable dual-sensor acquisition technique can effectively eliminate reverberation, broaden the frequency bandwidth, and improve both the resolution and fidelity of the seismic data. It is thus widely used in industry. However, it is difficult to ensure good coupling of the geophones with the seabed because of the impact of ocean flow, seafloor topography, and field operations; therefore, geophone data are seriously affected by the transfer function of the geophone-seabed coupling system. As a result, geophone data frequently have low signal-to-noise ratios (S/N), which causes large differences in amplitude, frequency, and phases between geophone and hydrophone data that severely affect dual-sensor summation. In contrast, the hydrophone detects changes in brine pressure and has no coupling issues with the seabed; thus, hydrophone data always have good S/N. First, in this paper, the mathematical expression of the transfer function between geophone and seabed is presented. Second, the transfer function of the geophone-seabed is estimated using hydrophone data as reference traces, and finally, the coupling correction based on the estimated transfer function is implemented. Using this processing, the amplitude and phase differences between geophone and hydrophone data are removed, and the S/N of the geophone data are improved. Synthetic and real data examples then show that our method is feasible and practical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.