Abstract
We introduce, characterize, and interpret the geomorphic history of a relict, Pleistocene-aged delta of the Chippewa River in central Lower Michigan. The broad, sandy Chippewa delta developed into various stages of Glacial Lake Saginaw, between ca. ≈17 and 15ka·BP (calibrated ages). Although the delta was first identified in 1955 on a statewide glacial geology map, neither its extent nor its Pleistocene history had been previously determined. The delta is typically forested, owing to its wet, sandy soils, which stand out against the agricultural fields of the surrounding, loamy lake plain sediments. The delta heads near the city of Mt Pleasant and extends eastward onto the Saginaw Lowlands, i.e., the plain of Glacial Lake Saginaw. Data from 3285 water well logs, 180 hand augered sites, and 185 points randomly located in a GIS on two-storied (sand over loam) soils were used to determine the extent, textural properties, and thickness of the delta. The delta is ≈18km wide and ≈38km long and is sandy throughout. Deltaic sediments from neighboring rivers that also drained into Glacial Lake Saginaw merge with the lower Chippewa delta, obscuring its boundary there. The delta is thickest near the delta's head and in the center, but thins to 1–2m or less on its eastern margins. Mean thicknesses are 2.3–2.9m, suggestive of a thin sediment body, frequently impacted by the waves and fluctuating waters of the lakes. Although beach ridges are only weakly expressed across the delta because of the sandy sediment, the coarsest parts of the delta are generally coincident with some of these inferred former shorezones and have a broad, incised channel that formed while lake levels were low. The thick upper delta generally lies above the relict shorelines of Glacial Lakes Saginaw and Arkona (≈17.1 to ≈16ka·BP), whereas most of the thin, distal delta is associated with Glacial Lake Warren (≈15ka·BP). Together, these data suggest that the Chippewa delta formed and prograded as lake levels in the Saginaw Lowlands alternated and episodically fell. The result is a delta that is comparatively thin, expansive, and sandy. In some places, these sands have subsequently been reworked into fields of small parabolic dunes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.