Abstract

The distribution and abundance of bull trout (Salvelinus confluentus) spawning were affected by geomorphology and hyporheic groundwater - stream water exchange across multiple spatial scales in streams of the Swan River basin, northwestern Montana. Among spawning tributary streams, the abundance of bull trout redds increased with increased area of alluvial valley segments that were longitudinally confined by geomorphic knickpoints. Among all valley segment types, bull trout redds were primarily found in these bounded alluvial valley segments, which possessed complex patterns of hyporheic exchange and extensive upwelling zones. Bull trout used stream reaches for spawning that were strongly influenced by upwelling. However, within these selected reaches, bull trout redds were primarily located in transitional bedforms that possessed strong localized downwelling and high intragravel flow rates. The changing relationship of spawning habitat selection, in which bull trout selected upwelling zones at one spatial scale and downwelling zones at another spatial scale, emphasizes the importance of considering multiple spatial scales within a hierarchical geomorphic context when considering the ecology of this species or plans for bull trout conservation and restoration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call