Abstract

AbstractThe Southern Alps are the topographic expression of late Cenozoic (<8 Ma ago) uplift of the crust of the leading edge of the Pacific plate in South Island, New Zealand. New fission track data on the basement exposed in the Southern Alps quantify the age, amount, and rate of rock uplift, and in combination with geomorphic parameters permit the construction of a new model of the geomorphic evolution of the Southern Alps. The model emphasizes the development over time and space of rock uplift, mean surface elevation, exhumation of crustal section, and relief. The earliest indications of mean surface uplift are between 4 and 5 Ma ago at the Alpine Fault. Mean surface uplift, which lagged the start of rock uplift, propagated southeastward from the Alpine Fault at a rate of 30 km/Ma. By about 4 Ma ago, exhumation had exposed greywacke basement adjacent to and east of the entire 300 km long central section of the Alpine Fault. At 3 Ma ago, greenschist was exposed in the southern parts of the Southern Alps near Lake Wanaka, and since then has become exhumed along a narrow strip east of the Alpine Fault. The model infers that amphibolite grade schist has been exhumed adjacent to the Alpine Fault only in the last 0·3 Ma. The age of the start of rock uplift and the amount and rate of rock uplift, all of which vary spatially, are considered to be the dominant influences on the development of the landscape in the Southern Alps.The Southern Alps have been studied in terms of domains of different rock uplift rate. At present the rate of rock uplift varies from up to 8–10 mm/a adjacent to the Alpine Fault to 0·8–1·0 mm/a along the southeastern margin of the Southern Alps. This spectrum can be divided into two domains, one northwest of the Main Divide where the present rock uplift rates are very high (up to 8–10 mm/a) and exceed the long‐term value of 0·8–1·0 mm/a, and another to the southeast of the Main Divide where the long‐term rate is 0·8–1·0 mm/a. A domain of no uplift lies immediately to the east of the Southern Alps, and is separated from them by a 1·0–1·5 km step in the basement topography. We argue that this spatial sequence of uplift rate domains represents a temporal one.The existing models of the geomorphic development of the Southern Alps—the dynamic cuesta model of J. Adams and the numerical model of P. Koons—are compared with the new data and evolutionary model. Particular constraints unrealized by these two earlier models include the following: the earlier timing of the start of rock uplift of the Southern Alps (8 Ma ago); the spatial variation in the timing of the start of rock uplift (8 Ma ago to 3 Ma ago); the lower long‐term rock uplift rate (0·8–1·0 mm/a) of the Southern Alps for most of the late Cenozoic; the lag between the start of rock uplift and the start of mean surface uplift; and the patterns of the amounts of late Cenozoic rock uplift and erosion across the Southern Alps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call