Abstract

The ab initio Hartree–Fock theory has been demonstrated to give accurate geometry predictions for bridged zirconocene dichlorides. Equilibrium geometries of crystallographically characterized bridged zirconocene dichlorides were optimized by Hartree–Fock, MP2, BLYP, and B3LYP methods, with basis sets ranging from 3-21G* to 6-311G**. Selected geometrical parameters were compared with experimental crystal structures. The least expensive HF/3-21G* method proved to be notably accurate. The accuracy of HF/3-21G* was verified by a comprehensive data set of 62 bridged zirconocene dichlorides. Furthermore, experimental corrections were applied to the optimized geometry parameters to eliminate systematic deviations. Corrections resulted in considerably improved accuracy for systematically overestimated metal–ligand distances, with maximum deviation falling from 0.081 to 0.039 Å, and absolute average deviations from 0.048 to 0.012 Å. Ligand–metal–ligand angles were predicted accurately with absolute average deviations of 0.7–1.3°. Zirconium–chlorine distances and chlorine–zirconium–chlorine angles are relatively constant in the studied molecules. Zirconium–cyclopentadienyl distances can be influenced mainly by modifying the ligand structure, whereas cyclopentadienyl–zirconium– cyclopentadienyl angles and cyclopentadienyl–cyclopentadienyl plane angles can be controlled by bridge modifications. The HF/3-21G* method can be applied for the estimation of steric effects in zirconocene catalyzed polymerization reactions, therefore being suitable for the construction of structure–polymerization property correlations. © 2000 John Wiley & Sons, Inc. J Comput Chem 22: 51–64, 2001

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.