Abstract

One of the fundamental criteria in the design of air structures is to achieve required strength at the highest possible reduction of structure weight w. However, it is necessary to keep the second design parameter i.e. stiffness of the air structural element on the proper level in order to satisfy durability and reliability of aircrafts.This paper presents the application of an integrated system based on artificial neural networks and calculations by the finite element method (FEM) for the optimization of geometry of a thin-walled element of an air structure. The main criterion of optimization was to reduce the structure’s weight w at the lowest possible deformation (high stress level) of the tested object. The objective of the analyses – using artificial neural networks (ANN) – was to investigate the effect of 4 individual variables defining geometry of the model (including: system of ribs and their inclination, system of holes in ribs and side walls) on its deformation and final value of the reduced weight w. Numerical analysis showed that the most important variable is the diameter of holes in the side walls of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.