Abstract

For proton exchange membrane fuel cells (PEMFCs), the distribution of reactant streams in the reactor is critical to their efficiency. This study aims to investigate the optimal design of the inlet/outlet flow channel in the fuel cell stack with different geometric dimensions of the tube and intermediate zones (IZ). The tube-to-IZ length ratio, the IZ width, and the tube diameter are adjusted to optimize the geometric dimensions for the highest pressure uniformity. Four different methods, including the Taguchi method, analysis of variance (ANOVA), neural network (NN), and multiple adaptive regression splines (MARS), are used in the analyses. The results indicate the tube diameter is the most impactive one among the three factors to improve the pressure uniformity. The analysis suggests that the optimal geometric design is the tube-to-IZ length ratio of 9, the IZ width of 14 mm, and the tube diameter of 9 mm with the pressure uniformity of 0.529. The relative errors of the predicted pressure uniformity values by NN and MARS under the optimal design are 1.62% and 3.89%, respectively. This reveals that NN and MARS can accurately predict the pressure uniformity, and are promising tools for the design of PEMFCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.