Abstract

A newly developed unbiased global optimization method, named dynamic lattice searching (DLS), is used to locate putative global minima for all (C6O)N clusters with Girifalco potential up to N=150. A simple greedy strategy is adopted for the basic frame, so DLS has a very high convergence speed and may converge at various configurations. As most structures are packed by basic tetrahedra, some sequences are defined by both configurations and the size of the basic tetrahedra. A sequence-based conformational analysis is carried out with the defined sequences by counting the hit number over 10,000 independent DLS runs for all the cases up to N = 5. It was found that the hit rate of a sequence is related to the size of the basic tetrahedra. U.e of this method proved that the Leary tetrahedral sequence is dominant in a certain range of cluster sizes, although the sequence has no potential energy advantage. The calculation results are also consistent with those of annealing experiments at high temperature, both in magic numbers and height of the peaks in the mass spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call