Abstract

The geometry of retinal nerve fibers may be altered with myopia, a known risk factor for glaucoma. Recent developments in high resolution imaging have enabled direct visualization of nerve fiber bundles at the temporal raphe with clinical hardware, providing evidence that this area is sensitive to glaucomatous damage. Here, we test the hypothesis that nerve fiber geometry is altered by myopia, both at the temporal raphe and surrounding the optic nerve head. Seventy-eight healthy individuals participated, with refractive errors distributed between emmetropia and high myopia (+0 to -13 DS). Custom high-density OCT scans were used to visualize RFNL bundle trajectory at the temporal raphe. A standard clinical OCT protocol was used to assess papillary minimum rim width (MRW) and peripapillary retinal nerve fiber layer (RNFL) thickness. Measures of raphe shape-including position, orientation, and width-did not depend significantly on axial length. In 7.5% of subjects, the raphe was rotated sufficiently that inversion of structure-function mapping to visual field space is predicted in the nasal step region. Low concordance to ISNT and related rules was observed in myopia (e.g., for RNFL, 8% of high axial myopes compared with 67% of emmetropes). Greater robustness to refractive error was observed for the IT rule. High density OCT scans enabled visualization of marked interindividual variation in temporal raphe geometry; however, these variations were not well predicted by degree of myopia as represented by axial length. That said, degree of myopia was associated with abnormal thickness profiles for the papillary and peripapillary nerve fiber layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.