Abstract

The rotational spectra of four isotopologues of an isolated complex formed between an argon atom and imidazole, Ar…imidazole, have been recorded in the 6–19 GHz region by Fourier transform microwave spectroscopy. Rotational transition frequencies have been fitted to Watson’s S-reduced Hamiltonian to yield rotational, centrifugal distortion and nuclear quadrupole coupling constants for the complex. Rotational constants determined for the parent and three 15N-containing isotopologues allow the three-dimensional structure of the complex to be described. The two angles, θ and ϕ, which define the orientation of the Ar atom relative to the imidazole ring have been determined for the first time in addition to the distance between Ar and the center of mass of the imidazole sub-unit, R. Fitting of structural parameters to the experimentally-determined moments of inertia yields a structure where Ar is positioned above the ring plane at a distance of 3.519 Å from the center of mass of the imidazole sub-unit. In the experimentally determined, average geometry, the intermolecular axis (drawn through Ar and the center of mass of the imidazole sub-unit) is oriented at 6° from the normal to the ring plane. The experimental results allow for four alternative possibilities for ϕ with 62.0(39)° being that which is most consistent with expectations for this parameter based on previous work. The experimentally-determined nuclear quadrupole coupling constants imply that the electric field gradient at each of the nitrogen nuclei of imidazole does not significantly change on formation of the complex with Ar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.