Abstract
We describe the geometry of the character variety of representations of the knot group Γm,n=〈x,y|xn=ym〉 into the group SU(3), by stratifying the character variety into strata corresponding to totally reducible representations, representations decomposing into a 2-dimensional and a 1-dimensional representation, and irreducible representations, the latter of two types depending on whether the matrices have distinct eigenvalues, or one of the matrices has one eigenvalue of multiplicity 2. We describe how the closure of each stratum meets lower strata, and use this to compute the compactly supported Euler characteristic, and to prove that the inclusion of the character variety for SU(3) into the character variety for SL(3,C) is a homotopy equivalence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.