Abstract

We investigate the set (a) of positive, trace preserving maps acting on density matrices of size N and a sequence of its nested subsets: the sets of maps which are (b) decomposable, (c) completely positive, and (d) extended by identity impose positive partial transpose and (e) are superpositive. Working with the Hilbert–Schmidt (Euclidean) measure, we derive tight explicit two-sided bounds for the volumes of all five sets. A sample consequence is the fact that, as N increases, a generic positive map becomes not decomposable and, a fortiori, not completely positive. Due to the Jamiołkowski isomorphism, the results obtained for quantum maps are closely connected to similar relations between the volume of the set of quantum states and the volumes of its subsets (such as states with positive partial transpose or separable states) or supersets. Our approach depends on the systematic use of duality to derive quantitative estimates and on various tools of classical convexity, high-dimensional probability, and geometry of Banach spaces, some of which are not standard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.