Abstract

We study the geometry and topology of (filtered) algebra bundles ΨZ over a smooth manifold X with typical fiber ΨZ(Z;V), the algebra of classical pseudodifferential operators acting on smooth sections of a vector bundle V over the compact manifold Z and of integral order. First, a theorem of Duistermaat and Singer is generalized to the assertion that the group of projective invertible Fourier integral operators PG(FC(Z;V)) is precisely the automorphism group of the filtered algebra of pseudodifferential operators. We replace some of the arguments in their work by microlocal ones, thereby removing the topological assumption. We define a natural class of connections and B-fields on the principal bundle to which ΨZ is associated and obtain a de Rham representative of the Dixmier–Douady class in terms of the outer derivation on the Lie algebra and the residue trace of Guillemin and Wodzicki. The resulting formula only depends on the formal symbol algebra ΨZ/Ψ−∞. Examples of pseudodifferential algebra bundles are given that are not associated to a finite-dimensional fiber bundle over X.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.